
DS-06-2017: Cybersecurity PPP: Cryptography

PRIViLEDGE
Privacy-Enhancing Cryptography in Distributed Ledgers

D4.1 – First Report on Architecture of Secure Ledger Systems

Due date of deliverable: 30 June 2019
Actual submission date: 30 June 2019

Grant agreement number: 780477 Lead contractor: Guardtime AS
Start date of project: 1 January 2018 Duration: 36 months
Revision 1.0

Project funded by the European Commission within the EU Framework Programme for

Research and Innovation HORIZON 2020

Dissemination Level

PU = Public, fully open X

CO = Confidential, restricted under conditions set out in the Grant Agreement

CI = Classified, information as referred to in Commission Decision 2001/844/EC

Ref. Ares(2019)4138266 - 30/06/2019

D4.1

First Report on Architecture of Secure Ledger Systems

Editors
Michele Ciampi (UEDIN)
Aggelos Kiayias (UEDIN)

Contributors
Nikos Karagiannidis (IOHK)

Björn Tackmann (IBM)
Ahto Truu (Guardtime)

Reviewers
Panos Louridas (GRNET)

Ivo Kubjas (SCCEIV)
Sven Heiberg (SCCEIV)

30 June 2019
Revision 1.0

The work described in this document has been conducted within the project PRIViLEDGE, started in January 2018.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No. 780477.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of the European
Commission.

c©Copyright by the PRIViLEDGE Consortium

Executive Summary
In this document we propose the architecture of protocols for secure ledger systems to provide a high level

structure that can be used, without ambiguity, to describe the protocol architecture of use cases and toolkits.
Ledger systems consist of several different components, such as a consensus mechanism that determines the
order of transactions, a ledger (policy and format) mechanism that decides which transactions are included in the
ledger, or the transaction protocol itself, which specifies which messages comprise valid transactions and how
they affect the world state, i.e., the state of the distributed database implemented by the ledger. In the deliverable
we provide a generic architecture of a ledger system and show how a candidate instantiation for the use case
for updating the ledger protocols impacts the proposed architecture. We propose a similar description regarding
the toolkits for flexible consensus and authentication in Hyperledger Fabric, and we also consider the security of
ledger systems in post-quantum scenarios. With this document we provide a global picture of the progress of the
research done to date in designing a detailed architecture for the Cardano update system (use case 4) and for the
toolkit for anonymous authentication. The next steps in terms of research will concern the problems left open in
this deliverable, that are mainly related to the achievement of a better understanding on how to concretely realize
(in terms of cryptographic primitives) the protocols proposed at a high level in this document.

Contents

1 Introduction 1

2 Overview of the architecture of secure distributed ledger systems 3
2.1 Generic architecture . 3

2.1.1 Consensus . 3
2.1.2 Block policy and format . 4
2.1.3 Transaction processing . 5
2.1.4 Ledger store . 6

2.2 Hyperledger Fabric . 6
2.2.1 Introduction . 6
2.2.2 Consensus . 7
2.2.3 Block format and policy . 7
2.2.4 Transactions . 7
2.2.5 Ledger store . 8

2.3 Cardano . 8
2.3.1 Introduction . 8
2.3.2 Ledger In Cardano . 8
2.3.3 Consensus: Ouroboros Family of Proof-of-Stake Protocols 9

Ouroboros Classic . 9
Ouroboros Praos . 10

2.3.4 Cardano (As-Is) Update System . 11

3 Use case 4: Cardano stake-based ledger 14
3.1 A Logical Architecture for an Update Mechanism in Distributed Ledgers 15
3.2 The Lifecycle of a Software Update . 16

3.2.1 Ideation . 17
3.2.2 Implementation . 19
3.2.3 Approval . 21
3.2.4 Activation . 23

4 Toolkits 26
4.1 Toolkits for anonymous authentication and flexible consensus in Hyperledger Fabric 26

4.1.1 Anonymous authentication in Hyperledger Fabric . 26
4.1.2 Flexible consensus in Hyperledger Fabric . 29

4.2 Toolkit for post-quantum secure protocols in distributed ledgers 30
4.2.1 KSI time-stamping . 30
4.2.2 BLT signature scheme . 32

5 Conclusions 33

i

Chapter 1

Introduction

This deliverable covers the architecture of protocols for secure ledger systems, such as authentication within the
infrastructure, solutions for updating the ledger protocols, or results on consensus protocols. Indeed, one of the
focus topic of this document is on proposing an architecture of secure ledger systems. Ledger systems consist
of several different components, such as a consensus mechanism that determines the order of transactions, a
ledger (policy and format) mechanism that decides which transactions are included in the ledger, or the transac-
tion protocol itself, which specifies which messages comprise valid transactions and how they affect the world
state, i.e., the state of the distributed database implemented by the ledger. We describe a generic architecture
of a ledger system and show how a candidate instantiation for the use case for updating the ledger protocols
impacts the proposed architecture. We propose a similar description regarding the toolkits for flexible consensus
and authentication in Hyperledger Fabric, and we also consider the security of ledger systems in post-quantum
scenarios.

The work-document is divided in three parts. In Chapter 2 we propose an overview of the architecture
of secure ledger systems, and describe how Hyperledger Fabric and Cardano implement this architecture. The
description of these ledger systems focuses on the components that are more relevant for the use case and toolkits
that we have considered above.

In Chapter 3 we propose a logical architecture of an update mechanism for proof-of-stake ledgers. An update
system allows the parties that run the ledger system to converge toward an improved version of the ledger (e.g.,
a more secure or faster ledger) and to facilitate the transition from the old to the new ledger. Traditionally, such
software updates have been handled in an ad-hoc, centralized manner. Somebody, often a trusted authority, or the
original author of the software, provides a new version of the software, and users download and install it from that
authority’s website. However, this approach is clearly not decentralized, and hence jeopardizes the decentralized
nature of the whole system: In a decentralized software update mechanism, proposed updates can be submitted
by anyone (just like anyone can potentially create a transaction in blockchain). The decision of which update
proposal will be applied and which won’t, is taken collectively by the community and not centrally. Therefore
we propose a standard architecture for an update mechanism for proof-of-stake ledger, and we show how this
architecture could be implemented for Cardano. We recall that even if the aim of this part of the document is to
describe an update mechanism for the Cardano ledger, the description proposed here could be used as a blueprint
for a generic proof-of-stake ledger system.

In Chapter 4 we discuss two toolkits that will extend the Hyperledger Fabric open-source blockchain platform
and a toolkit for post-quantum secure protocols in distributed ledgers. The toolkits related to Hyperledger Fabric
aim to extend the ledger system with a more sophisticated authentication mechanism that enables protecting the
identities of the parties in dynamic setting where new parties can join and leave the system at any time accordingly
to the policies decided by special nodes of the blockchain called membership service providers. The toolkit for
flexible consensus in Hyperledger Fabric aims to provide an architecture that allows separating the consensus
mechanism from the other parts of the system, such as the policy methods for generating blocks, or the network
protocols used to disseminate completed blocks to the entire network. The last toolkit concerns the security of

1

D4.1 – First Report on Architecture of Secure Ledger Systems

ledger systems in a post-quantum scenario and proposes solutions based on quantum-secure signatures and hash
functions.

2

Chapter 2

Overview of the architecture of secure
distributed ledger systems

2.1 Generic architecture

Distributed ledger systems consist of several different components, such as a consensus mechanism that deter-
mines the order of transactions, a distributed ledger (policy and format) mechanism that decides which trans-
actions are included in the distributed ledger, or the transaction protocol itself, which specifies which messages
comprise valid transactions and how they affect the world state, i.e. the state of the distributed database imple-
mented by the distributed ledger. The goal of this section is to describe a generic architecture of a distributed
ledger system. The subsequent sections describe how two concrete blockchain platforms, Hyperledger Fabric
and Cardano, can be viewed as instances of this generic model.

Consensus

Block policy and format Ledger store

Transaction processing

blocks

submit transactions

chain

confirmed transactions

ve
ri

fy
txve

rif
y tx

Figure 2.1: Generic architecture of a secure distributed ledger system. The dashed arrow indicates that the
connection may not appear in all types of systems.

A first outline of the generic architecture we describe here is provided in Figure 2.1. The goal of the remainder
of this section is not to describe the internals of the boxes shown there. Deliverable 3.1 describes these internals
for existing distributed ledger platforms in detail. Work packages WP2 and WP3, in particular Deliverables 2.2
to 2.4 as well as Deliverables 3.2 and 3.3, target improving the respective components.

2.1.1 Consensus

The foundational component of every distributed ledger system is the consensus mechanism. The main role
of consensus is to determine the next block of transactions that is to be written to a distributed ledger. The

3

D4.1 – First Report on Architecture of Secure Ledger Systems

consensus component itself treats the blocks as a black box; the only goal is to determine which candidate block
will be appended to the chain. A systematic analysis of different types of consensus mechanisms was provided
in Deliverable 3.1.

Mechanisms. There are different trust assumptions and mechanisms that consensus protocols for distributed
ledgers can be built on. The traditional (i.e., pre-blockchain) line of work on consensus considers Byzantine fault
tolerant (BFT) protocols, where the group of participants is fixed and known in advance, and nodes can com-
municate authentically. This type of protocol is used in the permissioned setting where the ledger is distributed
among a fixed set of organizations. In such a setting, parties are usually authenticated by digitally signing their
votes in the consensus protocol.

Early blockchain systems such as Bitcoin and Ethereum are based on a consensus mechanism known as
proof of work, where the influence of a party is related to its computing power, and thereby indirectly the amount
of energy wasted in the consensus-related computation. These algorithms are permissionless in the sense that
everyone can participate in the consensus by simply installing and running the blockchain software. Many newer
blockchain systems favor an approach called “proof of stake” where the influence is related to the amount of
blockchain-inherent tokens that it owns. Platforms differ in how exactly the stake is used to determine the
influence, but generally these protocols are significantly more efficient and less power-consuming than proof of
work. In terms of permissioning, these protocols can be seen as sitting between the other two types: no external
registration is required, but one has to receive some tokens before being able to participate in consensus.

Properties. The different types of protocols described above provide different properties to the higher-level
layers. For instance, BFT protocols usually provide finality in the sense that any block that is output by the
consensus mechanism is immediately guaranteed to remain unchanged. Also no block can be included in the
chain without the agreement of honest parties. While these properties are desirable, achieving them requires that
at least 2n/3 out of the n network participants are honest and actively participating in the protocol.

Optimistic protocols that are usually used in systems based on proof of work or proof of stake often choose
a different trade-off. They require only that (strictly) more than half of the resources (computing power or stake)
are controlled by honest parties. On the flip side, they achieve weaker guarantees: Blocks that are included in the
chain could be revoked if a longer concurrent chain appears (the probability for this decreases for blocks deeper
in the chain) and the chain quality property requires that at least a certain fraction of blocks are contributed by
honest parties, but fully adversarially determined blocks are also permitted.

Interface. The interface offered by the consensus component to higher-level protocols receives as input blocks
that are composed from the local view of a party and are meant to be agreed upon by the consensus participants.
The output of the consensus components consists of blocks that have been agreed upon by the consensus and are
ready for processing by the higher-level components.

The consensus protocol may keep state (such as the set of current protocol participants) and may further-
more, especially in permissionless systems, call out the transaction processing component for verification of the
transactions contained in a newly received blocks. While in a permissioned setting, writing to the ledger can be
restricted to eligible parties that can be held accountable, a permissionless ledger in principle allows arbitrary
parties to write, and verifying the consistency of transactions helps thwarting deniol-of-service attacks.

2.1.2 Block policy and format

The next level component deals with the structure of the blocks that are treated as black box by the consensus.
In particular, the component decides which transactions shall be included. It also creates the chain structure,
meaning a total order, of all blocks.

4

D4.1 – First Report on Architecture of Secure Ledger Systems

Mechanisms. The actual mechanisms implemented in the ledger policy and block format component differs
between different types of blockchain systems. In permissioned systems, the included in a block can simply
be chosen by order of their arrival, since all transactions are generated by legitimate users of the system. As
the consensus layer guarantees finality, an arriving block can also be immediately parsed and the contained
transactions considered final. In permissionless blockchain systems, network nodes are incentivized through
rewards which they receive (in part) through transaction fees. Therefore, the ledger policy and format component
will generally choose the transactions to be included in a given block based on the included transaction fees. The
component may also check transactions for validity before including them in a block.1 This step is not strictly
necessary, as invalid transactions can still be discarded by the higher-level protocol components; however, it
saves storage space by discarding invalid transactions and reduces the attack surface for denial of service attacks.

Most blockchain protocols implement the chaining of blocks by including a hash of each block in the re-
spective subsequent block. Especially in permissioned systems, however, other methods such as a simple block
number are equally valid.

Interface. The interface toward the lower-level consensus component consists of outputting generated blocks
that are meant to be agreed upon in consensus.

The interface toward the higher-level component receives as input transactions that are meant to be included
in a future block. Especially in permissionless systems it is desirable to check the validity of transactions before
including them in a block. In this case, a callback interface to verify transactions with the transaction component
can also be required.

2.1.3 Transaction processing

The transaction level obtains the transaction from client applications (often referred to as wallets), processes
them and updates the world state. The transaction format and semantics differs significantly between different
blockchain systems, depending on the main application area.

Mechanisms. The transaction level manages the state of the blockchain that is modified by transactions. In
the case of Bitcoin, the state is the so-called UTXO pool that contains all available tokens that can be spent. A
transaction removes some tokens from the pool (the inputs of the transactions) and adds new tokens generated by
the transaction (the outputs of the transaction). Permissionless blockchain systems that support smart contracts,
like Ethereum, do support a similar functionality for token transactions. Additionally, the world state contains
one namespace for each contract, and the contract can store arbitrary values in its namespace. Executing a
transaction then consists of performing the token transactions and executing the contract. Typically transactions
are authorized by signing them with private keys corresponding to the public keys used as account identifiers.
How and when such signatures are verified depends on particular ledger, but most commonly this is done before
the transactions are executed.

In permissioned blockchain systems, tokens are often not used for the invocation of individual transactions,
but are often still supported to implement payment functionality. Most permissioned systems also support some
form of smart contracts, but the types of implementation vary and include Ethereum-like post-consensus exe-
cution in Quorum, pre-consensus execution in Hyperledger Fabric, or execution within a centralized so-called
notary system in Corda.

Interface. The interface to the lower-level block policy and format layer consists of providing as output trans-
actions that are to be included in a future block, and receiving as input transactions from the ledger store that have
been extracted from a block decided in consensus. Additionally, the component may support a callback interface
for verifying the validity of transactions. The interface to higher-level protocols and application depends on the
transaction type that is implemented and is therefore dependent on the mechanism implemented.

1This is necessary since the chain can contain adversarially contained blocks.

5

D4.1 – First Report on Architecture of Secure Ledger Systems

2.1.4 Ledger store

The final component depicted in Figure 2.1 is the ledger store component that keeps the complete blockchain for
reference and for distributing it to parties that are joining the network or recovering from a crash or outage. The
ledger store may also deliver information to the transaction processing component so it can update its state after
new blocks have arrived via the network.

Mechanisms. The main mechanism of this component is a database that stores all blocks it receives from
consensus. The component also implements network protocols for distributing blocks to other nodes; this is
often achieved through a gossip mechanism.

Interface. Via the interface toward the consensus layer, the ledger store receive new blocks to be stored in the
database. Toward the transaction processing component, it provides as output transactions that are contained in
the newly arrived block.

2.2 Hyperledger Fabric

Client

Peer

Orderer

→ Transaction proposals

← Endorsements, Events

Transactions

B
lo

ck
s

Figure 2.2: Hyperledger Fabric distinguishes different roles. Clients invoke transactions; peers execute smart
contracts and store their state; orderers run a consensus protocol to determine the order of transactions.

2.2.1 Introduction

Hyperledger Fabric2 is a permissioned blockchain platform that targets enterprise applications, developed un-
der the umbrella of the Linux Foundation. Fabric is among the most actively developed enterprise blockchain
platforms and focuses on flexibility: it supports different consensus mechanisms, and it supports smart con-
tracts (dubbed chaincode) that is written in different widely used programming languages such as Go, Java, or
JavaScript. Since Fabric v1.0, the network allows to specify for each node participating in the network its dedi-
cated roles as depicted in Figure 2.2, i.e. whether it acts as a node participating in consensus (so-called orderers),
or as a node execution specific chaincode (so-called peers), or as a client that merely invokes transactions or
listens to events.

2https://www.hyperledger.org/projects/fabric/

6

D4.1 – First Report on Architecture of Secure Ledger Systems

2.2.2 Consensus

One of the main design principles of Fabric is its modular consensus architecture. The goal of consensus in
Fabric is specified as ordering the transactions, without validating the contents of the transaction. The component
is therefore mostly referred to as ordering service. As a permissioned blockchain platform, Fabric strives to
support different (small or large) deployments for diverse use cases. Each use case comes with specific trust
assumptions that parties are willing to make for the ordering service. As Fabric strives to support the majority of
use cases, a modular or pluggable consensus architecture is needed to fulfill that goal.

As of Fabric v1.0, two ordering service implementations are provided in the main distribution: solo and
kafka. The solo version implements a trivial type of consensus: a single node is used to process all blocks.
This implementation is not meant for production purposes and is mostly used for development. The kafka im-
plementation is based on Apache Kafka3, a distributed streaming platform that follows the publisher/subscriber
paradigm and offers crash-fault tolerant (CFT) operation based on the Apache ZooKeeper4 CFT consensus sys-
tem. In terms of trust, the kafka implementation is also centralized; a single malicious consensus node can attack
the integrity of the system. Kafka improves the reliability of the system over solo ordering, but does not change
the security of the system with in presence of malicious nodes. The recent release Fabric 1.4.1 added support for
the Raft consensus protocol based on etcd5, another CFT consensus system. Just like kafka, it does not improve
the resiliency against misbehaving nodes. (The system tolerates malicious clients transmitting transactions and
malicious peer nodes executing smart contracts up to a level specified in the contract policies.)

Neither solo nor kafka or raft ordering provide the resilience necessary in use cases where there is no single
party that can be trusted to properly perform the ordering. An experimental Byzantine-fault tolerant ordering
service based on the BFT-SMaRt implementation has been described by Sousa, Bessani, and Vukolič [SBV18].
The paper showed that while the performance on the system depends on the number of nodes and the size of
transactions, the BFT ordering service, when deployed on 10 nodes, can handle tens of thousands of transactions
per second and is unlikely to be the bottleneck in a Fabric deployment, as it exceeds the number of transactions
a node can verify [ABB+18]. An implementation of a BFT ordering service that is planned6 to be included in
the main distribution of Fabric is currently under development by IBM Research – Zurich. The mechanism will
be based on the PBFT protocol [CL02], but targeting improved transaction throughput.

2.2.3 Block format and policy

The policy of including transactions in a block is simple in a permissioned systems such as Fabric, where trans-
actions are known to be submitted by legitimate users of the system. Users that exhibit malicious behaviour can
be detected and have their permissions revoked. Transactions can simply be chosen based on a FIFO strategy; if
two transactions conflict, only the first one is considered valid and the second one is ignored. Each block starts
with a header that contains a hash of the previous block as well as a hash of the payload of the current block. The
payload consists of a list of transactions.

2.2.4 Transactions

Transaction processing in Fabric differs radically from other blockchain systems. Smart contracts, dubbed chain-
code in Fabric, can be implemented in arbitrary programming languages. More technically, they are deployed
as Docker containers that provide a remote procedure call (RPC) interface through which transactions can be
triggered. In turn, the chaincode container has access to an RPC interface offered by the peer implementation
through which it can access state. As chaincodes can contain code that is not deterministic (e.g., computation
can use randomness and even access parts of the host system), the transactions cannot be executed after ordering,
as the state of different nodes could diverge.

3https://kafka.apache.org/
4https://zookeeper.apache.org/
5https://coreos.com/etcd/
6https://jira.hyperledger.org/browse/FAB-33

7

D4.1 – First Report on Architecture of Secure Ledger Systems

To resolve the above issue, Fabric uses an endorsement process in which the execution of a contract takes
place prior to the ordering. In more detail, a client invokes a transaction by sending a transaction proposal,
which specifies the code to be executed as well as the parameters, to the endorsing peers (or simply endorsers)
for that chaincode. The peers then execute the chaincode and record the effects of the execution, the read-
write pattern to the state namespace and the events triggered by the chaincode. These effects are then encoded
in the endorsement that is signed by the peer and returned to the client. After collecting sufficiently many
endorsements, the client combines them with the proposal into the complete transaction and sends it to the
ordering service, which includes it in one of the future blocks. The peers then receive the blocks from the
ordering service, check whether sufficiently many endorsements are included in the transaction (each chaincode
can have a specific endorsement policy that specifies when a transaction is considered valid), and whether all
submitted endorsements are consistent, and in case of success update the current state of the chaincode.

As multiple invocations of the same chaincode may be concurrent, Fabric uses multi-version concurrency
control to serialize transactions whenever possible and reject conflicting transactions.

2.2.5 Ledger store

The blocks received from consensus (or via gossip from other peers) are stored on each peer in a LevelDB
key/value store which provides sufficient functionality and performance.

2.3 Cardano

2.3.1 Introduction

Cardano is a blockchain platform implemented by IOHK and underlying the Ada cryptocurrency. Cardano is
running on top of the Ouroboros proof-of-stake protocol. Due to the active development of both the protocol
and the whole platform, Cardano would benefit from a safe and secure decentralized software update system. In
other words, a system that will ensure that: a) any honest stakeholder will always be able to submit an update
proposal to be voted by the stakeholders community, b) it will prevent an update proposal that is not approved
by the honest majority to be applied and c) it will provide guarantees for the authenticity of the downloaded
software.

2.3.2 Ledger In Cardano

Transaction Generation. A transaction is a special data structure, which represents the act of value transfer
between nodes. Thus, when the user Alice sends money to the user Bob, the new transaction is created. Let us
call this transaction Tx1, the node under Alices wallet N1, and the node under Bobs wallet N2.

Thus, the node N1 does the following steps:

1. Creates transaction Tx1 and signs it with its private key.

2. Sends it to all known nodes (i.e., neighbors).

3. Saves it in its local data.

Each of N1’s neighbors sends Tx1 transaction to its neighbors and this process is repeated until the transaction
is propagated to all nodes. In addition, some slot leader7 will store this transaction in some block in the ledger.
The time required for a transaction to be actually added to a block depends heavily on the network load. The
more transactions flow in the network the more time will be required.

7A slot leader in a proof-of-stake consensus protocol is the equivalent of a miner in a proof-of-work protocol. It is the entity who has
the legitimate right to issue a new block by packing new transactions into it with a specific order.

8

D4.1 – First Report on Architecture of Secure Ledger Systems

Each transaction contains a list of inputs and a list of outputs; outputs of the transaction Tx0 can be used as
inputs of another transaction Tx1 and the outputs of this to another transaction forming a chain of value transfer
via transactions. Inputs and outputs carry information about money flow: inputs inform where the money came
from, and outputs inform where the money go to. The number of inputs and outputs in a transaction can be
different.

In more detail, an input of a transaction consists of:

– An ID of a transaction TxN , whose output is used for this input. A transaction ID is a BLAKE2b-256
hash of the transaction.

– An index specifying which output of transaction TxN is referenced.

An output of a transaction consists of:

– An address of the node N we want to send a value to. An address is a BLAKE2b-224 hash of the hash of
the public key of the N node.

– Amount of money we want to send. This value is 64-bit unsigned integer.

Transaction Verification and State Transitions An output that is not yet an input of another transaction is
called an unspent transaction output (UTXO). Only unspent outputs can be used as inputs for other transactions,
to prevent double-spending.

Each transaction in Cardano is accompanied by a proof (also called a witness) that this transaction is valid.
Even if the output is an unspent one, we have to prove that we have a right to spend it. Since a TxN transaction
can have many inputs, the witness for it consists of the witnesses of all TxN ’s inputs, and only if all the inputs
are valid, TxN is valid too. If a particular transaction is invalid, it will be rejected by the network. There are two
types of witnesses: one based on a public key (valid input must be signed with a private key corresponding to
this public key) and one based on a script.

Witnesses are stored in the blockchain and anybody can see, inspect and independently verify them. But after
some time a node may delete old proofs in order to save space. The technique of storing transactions separately
from their proofs is called segregated witness. Under this scheme, transactions and proofs are stored in two
separate places in a block, and can be processed independently.

Therefore, every node in the network not only accepts transactions, but also verifies them. To this end, every
node has to keep track of unspent outputs. This allows to validate that inputs in a published transaction are
indeed the unspent outputs. Actually, all unspent outputs (UTXO), are stored in a special key-value database
called Global State.

The collection of all UTXO is known as the UTXO set and forms the state of the Cardano blockchain. The
UTXO set grows as new UTXO is created and shrinks when UTXO is consumed. Every transaction represents a
change (a state transition) in the UTXO set.

2.3.3 Consensus: Ouroboros Family of Proof-of-Stake Protocols

In this section we sketch the proof-of-stake protocols Ouroboros [KRDO17] and Ouroboros Praos [DGKR17].
The former is currently underlying the deployed Cardano blockchain, while the latter is foreseen to ultimately
replace it. To avoid confusion, in the following we refer to the Ouroboros protocol [KRDO17] as Ouroboros
Classic.

Ouroboros Classic

Description. The protocol operates (and was analyzed) in a synchronous model that splits the time continuum
into a sequence of consecutive, non-overlapping intervals called slots (in Cardano, each slot is 20 seconds long).

9

D4.1 – First Report on Architecture of Secure Ledger Systems

It is assumed that all parties are equipped with synchronized clocks that tell them the index of the current slot,
and all messages are delivered within the next slot.

In each slot, each of the parties can determine whether it qualifies as a so-called slot leader for this slot.The
event of a particular party becoming a slot leader occurs with a probability proportional to the stake controlled by
that party, is independent for two different slots, and is determined by a public, deterministic computation from
the stake distribution and so-called epoch randomness (we will discuss shortly where this randomness comes
from) in such a way that for each slot, exactly one leader is elected.

If a party is elected to act as a slot leader for the current slot, it is allowed to create, sign, and broadcast
a block (containing transactions that move stake among stakeholders). Parties participating in the protocol are
collecting such valid blocks and always update their current state to reflect the longest chain they have seen so
far that did not deviate from their previous state by too many blocks. As in the case of Bitcoin [Nak08], if there
are multiple candidate chains, the slot leader will always choose the longest one to attach a new block.

Multiple slots are collected into epochs, each of which contains R ∈ N slots (in Cardano, R = 21600). Each
epoch is indexed by an index j ∈ N. During an epoch j, the stake distribution that is used for slot leader election
corresponds to the distribution recorded in the ledger up to a particular slot of epoch j − 1, chosen in a way that
guarantees that by the end of epoch j − 1, there is consensus on the chain up to this slot. Additionally, the epoch
randomness for epoch j is derived during the epoch j− 1 via a guaranteed-output delivery coin tossing protocol
SCRAPE [CD17] that is executed by the stakeholders.

Security. Ouroboros Classic was shown by Kiayias et al. [KRDO17] to achieve the common prefix, chain
growth, and chain quality properties, proposed as security desiderata for blockchain protocols by Garay et al.
[GKL15]. It is well-known that these properties imply both persistence and liveness of the resulting ledger.
These properties are achieved by Ouroboros under the following assumptions:

1. synchronous communication (as outlined above);

2. majority of the stake is always controlled by honest parties (i.e., parties following the protocol);

3. parties cannot be corrupted immediately, there is a corruption delay in place;

4. the stake shift8 per epoch is limited.

Ouroboros Praos

Description. The Ouroboros Praos protocol [DGKR17], despite sharing the basic structure with Ouroboros
Classic, differs from it in several significant points; we now outline these differences.

The slot leaders are elected differently in Praos: Namely, each party for each slot evaluates a verifiable
random function (VRF, [DY05]) using the secret key associated with their stake, and providing as inputs to the
VRF both the slot index and the epoch randomness. If the VRF output is below a certain threshold that depends
on the party’s stake, then the party is an eligible slot leader for that slot, with the same consequences as in
Ouroboros Classic. Each leader then includes into the block it creates also the VRF output and a proof of its
validity to certify its eligibility to act as a slot leader. The probability of becoming a slot leader is again roughly
proportional to the amount of stake the party controls, however now it is independent for each slot and each party,
as it is evaluated locally by each stakeholder for itself. This local nature of the leader election implies that there
will inevitably be some slots with no, or several, slot leaders.

In each epoch j, the stake distribution that is used in Praos for slot leader election corresponds to the distri-
bution recorded in the ledger up to the last block of epoch j − 2. Additionally, the epoch randomness for epoch
j is derived as a hash of additional VRF-values that were included into blocks from the first two thirds of epoch
j − 1 for this purpose by the respective slot leaders.

8Stake shift is a change in the stake distribution among the participants of the protocol.

10

D4.1 – First Report on Architecture of Secure Ledger Systems

Finally, the protocol uses key-evolving signatures for block signing, and in each slot the honest parties are
mandated to update their private key, making the system resilient to even adaptive corruptions.

Security. Ouroboros Praos was shown by David et al. [DGKR17] to achieve both persistence and liveness
under weaker assumptions than Ouroboros Classic, namely:

1. semi-synchronous communication, where messages can be adversarially delayed for up to ∆ slots (where
∆ affects the security bounds but is unknown to the protocol);

2. majority of the stake is always controlled by honest parties (i.e., parties following the protocol);

3. the stake shift per epoch is limited.

In particular, Ouroboros Praos is secure in face of fully adaptive corruptions without any corruption delay.

2.3.4 Cardano (As-Is) Update System

The current update system of Cardano is quite restricted due to the fact that research work on blockchain updating
is necessary for implementing a decentralized9 update mechanism. Therefore, for lack of research results in this
area the current implementation, although it provides a basic updating mechanism, it operates with significant
constraints. In the following paragraphs we provide a short overview of the current implementation and pinpoint
various restrictions.

Governance. Only a specific set of users can issue an Update Proposal (UP). These are the direct delegates of
a specific set of private keys (the so-called genesis keys). In other words, the genesis keys can delegate their right
to submit a UP to some other key and then only a key has the right to submit a UP.

An UP is a separate object that it is created, relayed to the network and after successful verification, it is
stored in a memory pool. An UP contains among others, a block version, a set of protocol parameters (e.g., max
block size, slot duration etc.), a hash ID that is the result of applying a hash function to the actual update code for
the update (and thus uniquely identify this piece of code), the UP issuer’s public key and the issuer’s signature
of this UP. A vote for an UP is another object that can be transmitted on the network and after verification it is
temporarily stored in a memory pool. A vote consists of the voter ID (stake public key), the ID of the UP, the
ballot and and the voter’s signature.

Note that the current update system works only in a federated setting, allowing only a specific set of keys (the
delegates of the Genesis keys) to have the right to propose and vote for updates. In order to lift this restriction
solid research results on the governance of decentralized UPs are due that will provide the necessary guarantees
that the update mechanism will work with no problems.

States of an Update Proposal.

– Submitted: A user submits an Update Proposal to the network. This is validated and kept in a memory
pool. At this state, stakeholders can submit their votes for this UP. UPs and votes reside in the memory
pool.

– Active: When an UP from the previous state is included in a block (update payload within a block body)
and thus gets committed into the blockchain, then, it becomes active. Once a UP becomes active, then a
poll starts for a specific duration, in order to either confirm it or reject it.

9Decentralized here means that is accessible by any stakeholder, as well as that the decisions are based on stake majority and not only
on a restricted set of privileged users.

11

D4.1 – First Report on Architecture of Secure Ledger Systems

– Confirmed or Rejected: When an update proposal gathers votes above a confirmation threshold,10 we
say that it becomes confirmed. For each UP we store the earliest slot (i.e., block number) that has been
confirmed. If an update proposal does not manage to get confirmed within its voting period, it becomes
rejected. Confirmed/rejected proposals may become active again, and even end up rejected/confirmed, if
a blockchain rollback occurs and poll ends with an opposite decision on the alternative branch. That is
why for each update proposal that gets confirmed we need to wait for a number of slots, in order for the
confirmation to become stable.

– Confirmed permanently: If a proposal has been approved in some block and there are at least 2k blocks
after this one (where k is a security parameter), the update proposal becomes confirmed permanently.
Permanently Confirmed state reflects the fact that the confirmed state cannot be changed anymore, because
we have the guarantee that at most 2k blocks must be rolled back.

– Discarded: If a proposal has been rejected in some block and there are at least 2k blocks after this one,
the update proposal becomes discarded. Discarded state reflects the fact that the rejected state cannot be
changed anymore. If a proposal is discarded then it does not affect consensus rules anymore and it is safe
to evict it out of consideration/storages.

– Endorsed After the confirmation of an update proposal becomes stable, then the endorsement phase be-
gins. An endorsement is a signaling mechanism that signifies upgrade readiness that takes place only for
confirmed UPs. Endorsement is possible only for confirmed UPs that have been stabilized. When a user
endorses a UP, essentially the user states readiness to adopt this UP. We count the endorsements for each
UP that has been confirmed at least 2k slots before the current slot (i.e., confirmed UPs that have passed
their stabilization period), and check if they have exceeded a certain adoption threshold. If a UP gets
enough endorsements at the current slot, it is kept in a list of to-be adopted update proposals.

– Activated Activation (also called adoption) of a UP is triggered only by a change of the epoch. When a
new epoch comes, then we look among UPs that have achieved to pass the endorsement threshold at least
2k slots back, and from these, we choose the one with the highest protocol version (each UP corresponds
to a specific protocol version).This will be the UP adopted (i.e., activated). Therefore, UP activations can
only take place at the beginning of a new epoch and at no other time. All other UPs —even if they have
been endorsed above the threshold also— that correspond to smaller versions than the newly adopted one
are discarded.

Deployment The current mechanism supports adoption, without the need of a software upgrade, only for a
limited set of protocol parameters, such as the block size limit, the duration of a slot, the transaction size limit,
etc. This is possible, because a fixed set of protocol parameters has been bound to the protocol version number.
So, when a version becomes adopted (see discussion above), then all nodes validate new blocks with the set of
protocol parameters bound with the adopted version, without the need to do any software updates. All other
consensus rules changes must be handled through a soft or a hard fork type of change.

Conflicts and Dependencies No special care for conflicts and dependencies between update proposals has
been taken. Updates are merely based on a basic versioning scheme.

Update Voting Delegation No special delegation mechanism is in place for update proposal voting. For del-
egating update proposal votes a separate delegation mechanism than the standard delegation for block issuing
must be used.

10The confirmation threshold is a protocol parameter. For example, it could have the same value as that of the honest (total) stake
majority, which is typically 50%.

12

D4.1 – First Report on Architecture of Secure Ledger Systems

Update Policies No distinction between hot-fixes, change requests is made. In addition, there is no way declar-
ing update priority/criticality. In general, all changes are considered of being of ”the same type” and the only
differentiation is declared through the versioning scheme, which signifies major and minor updates.

Update Metadata No consideration for the definition of update proposal metadata has been made in the current
implementation.

Update Code linkage UPs include a hash of the software update to be downloaded from the network and
installed. The downloaded software is signed by IOHK (i.e., a central authority) and thus considered trusted. Of
course, this departs from an ideal decentralized setting, where no central authorities (that can be compromised)
exist.

All in all, the current update mechanism serves very well the first incarnation of Cardano, which is known
as the Byron release. It is a release, where the blockchain system does not operate on a fully decentralized
mode, but essentially, the consensus protocol runs by a set of trusted nodes (i.e., a federated setting). This is
of course, only the first step in the Cardano evolution roadmap, since a gradual transition to decentralization
has been planned (code-named Shelley release). We have seen that from a decentralization perspective the as-is
update systems bears significant limitations. The most obvious one is that the decisions for the update proposals
are not taken but the majority of stake, but rather by a limited set of trusted stakeholders. Moreover, we have
seen that the current update system implements a very simple “update logic” model, where software updates
are limited to a predefined set of protocol parameters. The lack of specialized update metadata, the disability to
distinguish different “types” of updates, as well as the appropriate resolution of update conflicts and in general,
the fulfillment of update constraints (e.g., update dependencies), render it insufficient for a decentralized proof-
of-stake blockchain system.

13

Chapter 3

Use case 4: Cardano stake-based ledger

Cardano is an actively developed system, and as such will clearly need updates and improvements when new
requirements arise, bugs are discovered, standards or protocols change, or new technologies become relevant.

Traditionally, such software updates have been handled in an ad-hoc, centralized manner: Somebody, often
a trusted authority, or the original author of the software, provides a new version of the software, and users
download and install it from that authority’s website. However, this approach is clearly not decentralized, and
hence jeopardizes the decentralized nature of the whole system: In a decentralized software update mechanism,
proposed updates can be submitted by anyone (just like anyone can potentially create a transaction in blockchain).
The decision of which update proposal will be applied and which won’t, is taken collectively by the community
and not centrally. Thus, the road-map of the system is decided jointly. Moreover, there is no central code
repository, nor there is some main software maintainer, who decides on the code. All versions of the code
are distributed and only local copies exist, in the same manner that the ledger of transactions is distributed in
blockchain. The decentralized software update system must reach a consensus, as to what version is the current
one (main branch) and which code branch will be merged into main. Finally, the decentralized software update
system guarantees the authenticity of the downloaded software, without the need to have some central authority
to sign the code, in order to be trusted.

At present, there is no standard way to propose updates, reach consensus on such proposals and then—once
consensus has been reached—distribute updates securely to all participants. There is no way to guard against
malicious proposals on the one hand, while on the other hand enabling critical security updates or bug-fixes to
be distributed in swiftly.

Ideally, each participant (with sufficient stake) of the Cardano ledger should be allowed to make update
proposals and have a vote on them, then deploy a corresponding update efficiently. This raises several natural
requirements:

– The mechanisms for handling proposals, voting and deployment of updates, should to as large extent as
possible leverage the blockchain itself, with its “built-in” consensus mechanism.

– Concurrent, potentially contradictory proposals need to be handled, guaranteeing that they will not be
accepted and deployed at the same time.

– Community splits over controversial updates should be prevented.

– Participants who have been inactive when some update was deployed need to be prevented from getting
locked out of the system.

– Any proposal needs to be securely linked to the actual binaries that will be distributed if the proposal is
approved.

There are several ways to approach the problem of constructing an update system meeting the above require-
ments. In the following subsections, first we focus on a logical architecture that depicts the various components

14

D4.1 – First Report on Architecture of Secure Ledger Systems

Delegation

A Logical Architecture for an Update Mechanism

Transaction Processing

Common
Transactions

State Machine

Consensus

Conflicts,
Dependencies

Ledger Store

Activations

Voting Protocol

Update Consensus

Update
Proposals Delegations

Blocks, Slots, Epochs,
Randomness

Update
Logic

Metadata

Deployment

Update Proposals, Votes, Delegations, Activations

Votes

UPDATE GOVERNANCE

Update
Code

Policy & Ledger Format

Blocks

Blocks

Priorities

P2P Network

Activation Method

BlockchainActivation Signal

Figure 3.1: A logical architecture for an update mechanism.

of a ledger system and their interactions for this use-case and then, we describe the phases in the lifecycle of a
decentralized software update.

3.1 A Logical Architecture for an Update Mechanism in Distributed Ledgers

In Figure 3.1, we depict a logical architecture that incorporates a software update mechanism in a distributed
ledger. In this figure, we can see that the set of events flowing into the ledger system has been enhanced. Apart
from the traditional transactions, which deal with the transfer of value between stakeholders and trigger changes
to the global state, now we can see other events such as Update Proposals, Votes, or even Vote Delegations and
Activation events being generated from Update Governance component and entering the ledger system.

Our primary goal is to store all these new events that pertain to the update mechanism, within the ledger
itself, as an immutable record of historical events. To this end, these new events are transformed to special types
of transactions and as such, have to go through the rigorous transaction validation process, performed by each
node of the network. This is depicted at the Transaction Processing layer, where all the logic for what makes a
legitimate transaction is implemented.

Ordinary transactions change the global state of value distribution but in the case of smart contracts can also
change the state of smart contract persistent data by triggering the execution of smart contract code. Update
events do not change the global state in the same sense; however, one can imaging an “Update Proposal state”,
representing the number of Update Proposal submitted by a user. Similarly, one could define a “Voting state”
representing the votes gathered by each proposal.

Transactions are included into blocks by the Policy and Ledger Format layer and these newly generated
blocks are passed on to the next layer. The Consensus layer is where we achieve consensus on what block
is legitimate and which blockchain branch is the legitimate one and a new block can be attached to it safely.
Regardless of the “type” of the consensus protocol (either proof-of-work, or proof-of-stake) the consensus rules
that guide the block validation logic must be enhanced to incorporate the new events (i.e., transaction types)

15

D4.1 – First Report on Architecture of Secure Ledger Systems

that are to be stored in the ledger. As we depict in the figure, the final destination of all types of events is the
distributed ledger, which serves as the single version of the truth for the updating history of the system.

In particular, for the Cardano case one has to consider the possible enhancements necessary for the Ouroboros
family of protocols [KRDO17]. Apart from the block validation affecting the consensus rules, one has to take
into account the possible impact from the protocols from the Update Governance component depicted in Fig. 3.1.

Update Governance is the component in the architecture that enables a decentralized updating mechanism. It
allows all users to freely vote on update proposals and then considers the stake distribution for forming the final
result. This is achieved via a secure voting protocol that must be tightly integrated with Ouroboros. Moreover,
for these users that might be owners of stake but lack the skills and expertise to vote for or against a software
update proposal, a voting delegation protocol must be in place. This will enable the delegation of the voting right
to some other user (regardless of his/her stake), a so-called expert, that will assume the voting on behalf of the
delegating user. The ultimate goal of the voting and delegation protocols is all the participating users to reach at
an update consensus. In other words, to reach a common agreement on the update proposal priorities and on the
evolution roadmap of the ledger system. Voted update proposals must be eventually deployed to the system and
become adopted updates, which are activation events that are stored in the ledger, as well.

The Update Logic component handles the rules that will guarantee a seamless and versatile activation of
software updates into the ledger system. More specifically, this component implements the necessary “logic” for
conflict resolution and secures the updating mechanism from updates that might lead the system to an unstable
state. In addition, it supports the correct enforcement of update dependencies and prevents update patches to be
installed, if required previous patches are missing. Finally, it implements the notion of Update Policies, which
differentiate speed of deployment and method of deployment based on: a) the type of change (bug-fix or change
request), b) the part of the system that is affected by the change (consensus rules impact, or only software impact)
and c) the urgency of the change (severity level). The method of deployment determines the actual mechanism
that will be used in order to activate an update in the ledger system. It is executed by the Deployment component
depicted in 3.1. For protocol changes one must consider the most appropriate method for such a deployment
and choose among a set of well-known practices such as hard-forks and soft-forks but also from more niche
techniques, such as velvet-forks [ZSJ+18] and the sidechains mechanism [BCD+14].

For all these to work, the Update Logic component must be based on an appropriate set of Update Metadata.
These metadata must accompany each submitted Update Proposal and sufficiently describe the change, its ex-
pected benefit, its type, its urgency for deployment, its possible conflicts with other updates and many more. In
addition to the metadata, every update proposal must be accompanied by the update patch that comprises the ac-
tual code to be installed. Both of these two, the metadata and the code, cannot be stored in the ledger, due to their
sizing requirements. In order to avoid to store these data into any type of centrally owned servers (e.g., into the
cloud). One should consider the use of a P2P file storage or database solution, with content addressable storage
capabilities. Moreover, the proposed solution must guarantee the authenticity of the downloaded software with
respect to the original update proposal.

3.2 The Lifecycle of a Software Update

A software update (SU) is the unit of change for the blockchain software. It must have a clear goal of what it tries
to achieve and why it would be beneficial, if applied to the system. Moreover, it should have a clear scope. In
Figure 3.2, we depict the full lifecycle of a software update following a decentralized approach. In this lifecycle,
we identify four distinct phases: a) the ideation phase, b) the implementation phase, c) the approval phase and d)
the activation phase. In this section, we briefly outline each phase and at the subsequent subsections, we provide
all necessary details for realizing each phase in a decentralized setting.

The SU starts from the ideation phase which is the conceptualization step in the process. It is where an SU
is born. During this phase, a justification must be made for the SU and this has to be formally agreed by the
community (or the code owner). This justification takes the form of an improvement proposal document (appears
as SIP in the figure and will be defined shortly). Once the SU’s justification has been approved, then we enter

16

D4.1 – First Report on Architecture of Secure Ledger Systems

the implementation phase. It is where the actual development of the SU takes place. The result of this phase
is a bundle (Update Proposal, UP) consisting of source code (implementing the SU), metadata and optionally
binaries produced for one, or more, specific platforms. This is submitted for approval and thus the approval
phase follows. Once the UP (i.e., the source code implementing the SU) has been approved (by the community,
or the code owner), the community is called for upgrading. The actual upgrading takes place in the activation
phase, which is there to guard against chain-splits by synchronizing the activation of the changes.

Interestingly, the phases in the lifecycle of a SU are essentially independent from the approach (centralized
or decentralized) that we follow. They constitute intuitive steps in a software lifecycle process that starts from
the initial idea conception and ends at the actual activation of the change on the client software. Based on this
observation, one can examine each phase and compare the traditional centralized approach, used to implement it,
to its decentralized alternative. Moreover, not all phases need to be decentralized in a real world scenario. One
has to measure the trade-off between decentralization benefits versus practicality and decide what phases will be
decentralized. Our decomposition of the lifecycle of a SU in distinct phases helps towards this direction.

Figure 3.2: The lifecycle of a software update (a decentralized approach)

Ideation Phase
Implementation

Phase

Activation Phase

SIP voted

SIP
rejected

Decentralized Storage Solution

SU initiated

(Upload) SIP
document

(Download)
Latest approved

source code

(Upload)
source code

& binaries (optional)
implementing UP

& metadata

UP
submission

UP
approved

Approval Phase

(Download)
source code

& binaries (optional)
& metadata
for approval

UP
rejected

UP
expired

(Download)
source code or

binaries to install

Adoption
threshold

met?

UP
activated

UP
expired

3.2.1 Ideation

A SU starts as an idea. Someone captures the idea of implementing a change that will serve a specific purpose
(fix a bug, implement a new feature, provide some change in the consensus protocol, perform some optimization
etc.). The primary goal of this phase is to capture the idea behind a SU, then record the justification and scope
of the SU in some appropriate documentation and finally come to a decision on the priority that will be given to
this SU.

Traditionally, in the centralized approach, a SU is proposed by some central authority (original author, group
of authors, package maintainer etc.), who essentially records the need for a specific SU and then decides when
(or, in which version) this could be released. In many cases, (e.g., Bitcoin [Nak08], Ethereum [B+14]) the
relevant SU justification document (called BIP, or EIP respectively) is submitted to the community, in order to be
discussed. Even when this “social alignment” step is included in this phase, the ultimate decision (which might
take place at a later phase in the lifecycle), for the proposed SU, is taken by the central authority. Therefore, the
road-map for the system evolution is effectively decided centrally. Moreover, this social consensus approach is
informal (i.e., not part of a protocol, or output of an algorithm) and is not recorded on-chain as an immutable

17

D4.1 – First Report on Architecture of Secure Ledger Systems

historical event.
The ideation phase in the decentralized approach is depicted in Figure 3.3.

Figure 3.3: The ideation phase.

Update
ConstraintsSIP submit to

Blockchain
SIP

Voting

stabilization

Experts’
Groups

Stakeholders

Update Policy
Impact

Voting
Delegation

(Upload) SIP
document &

metadata

Decentralized Storage Solution

SU
initiated

SIP
submitted

SIP
revealed

SIP
rejected

SIP voted

SIP
reviewed

(Download)
SIP document

& metadata

In the decentralized setting, a SU starts its life as an idea for improvement of the blockchain system, which is
recorded in a human readable simple text document, called the SIP (Software 1 Improvement Document). The SU
life starts by submitting the corresponding SIP to the blockchain by means of a special fee-supported transaction.
Any stakeholder can potentially submit a SIP and thus propose a SU.

A SIP includes basic information about a SU, such as the title, a description, the author(s) etc. Its sole
purpose is to justify the necessity of the proposed software update and try to raise awareness and support from
the community of users. A SIP must also include all necessary information that will enable the SU validation
against previous SUs (e.g., update dependencies or update conflict issues), or against any prerequisites required,
in order to be applied.

A SIP is initially uploaded to some external (to the blockchain system) decentralized storage solution and
a hash id is generated, in order to uniquely identify it. This is an abstraction to denote a not centrally-owned
storage area, which is content-addressable, i.e., we can access stored content by using the hash of this content as
an id. A change in the content will produce a different hash and therefore this will correspond to a different id and
thus to different stored content. This hash id is committed to the blockchain in a two-step approach, following a
hash-based commitment scheme, in order to preserve the rightful authorship of the SIP.

Once the SIP is revealed a voting period for the specific proposal is initiated. Any stakeholder is eligible to
vote for a SIP and the voting power will be proportional to his/her stake. Votes are specialized fee-supported
transactions, which are committed to the blockchain.

Note that since a SIP is a document justifying the purpose and benefit of the proposed software update, it
should not require in general sufficient technical expertise, in order for a stakeholder to review it and decide on
his/her vote. However, in the case that the evaluation of a SIP requires greater technical knowledge, then a voting
delegation mechanism exists. This means that a stakeholder can delegate his/her voting rights to an appropriate
group of experts but also preserving the right to override the delegate’s vote, if he/she wishes.

1“Software” and “System” are two terms that could be considered equivalent for the scope of this document and we intend to use
them interchangeably. For example, a SIP could also stand for a System Improvement Proposal.

18

D4.1 – First Report on Architecture of Secure Ledger Systems

The delegation mechanism will also be used in order to implement the concept of an update policy, which
enables different activation speeds for a SU depending on its type (e.g., a bug-fix versus a change request, a SU
that has a consensus protocol impact versus a no-impact one, etc.). For all these special delegation groups will be
considered. A SIP after the voting period can either be voted or rejected. Note that in the decentralized approach
the ideation phase could very well be implemented by a treasury system (e.g., similar to the one proposed by
Bingsheng et al. [ZOB18]). A treasury is a decentralized and secure system aimed at the maintenance of a
blockchain system that allows the submission of proposals (i.e., candidate projects) for the improvement of the
system. These proposals go through a voting process, in order to select the surviving ones. More importantly,
the system is supported by a funding mechanism, where funds raised are stored in the treasury. These funds are
used for funding the approved projects. Implementing the ideation phase with a treasury system, would enable
additionally the appropriate management of the funding of each SU.

3.2.2 Implementation

The voting of a SIP is the green light signal for entering the implementation phase. This is the period where the
actual implementation of a SIP takes place. So one could very roughly imagine this phase as a box, where a SIP
comes in as input and source code implementing the SIP comes out as output.

The scope of this phase is twofold: a) to develop the source code changes that implement a specific voted
SIP and b) to execute a second voting delegation round, in order to identify the experts that will approve the
new source code. At the end of this phase, the developer creates a bundle comprising the new source code, the
accompanied metadata and optionally produced binaries, which we call an update proposal (UP). The newly
created UP must be submitted for approval, in order to move forward.

In the centralized setting, it is typical (in the context of an open source software development model), when a
developer wants to implement a change, first to download from a central code repository the version of the source
code that will be the base for the implementation and then, when the implementation is finished, to upload it to
the same central code repository and submit a pull-request. The latter is essentially a call for approval for the
submitted code. The central authority responsible for the maintenance of the code-base, must review the sub-
mitted code and decide, if it will be accepted, or not. Therefore, in the centralized approach the implementation
phase ends with the submission of a pull-request.

The decentralized alternative for the implementation phase is identical to its centralized counterpart as far
as the development of the new code is concerned. However, in the decentralized setting, there exist these major
differences: a) there is not a centrally-owned code repository (since there is not a central authority responsible
for the maintenance of the code), b) a delegation process is executed, in parallel to the implementation, as a
preparation step for the (decentralized) approval phase that will follow and c) the conceptual equivalent to the
submission of a pull-request must be realized.

19

D4.1 – First Report on Architecture of Secure Ledger Systems

Figure 3.4: The implementation phase.

SIP voted

UP
Implementation

Experts
Groups

Stake-
holders

Update Policy
Impact

Voting
Delegation

Decentralized Storage Solution

UP Implemented

(Upload) source code
& metadata
& binaries (optional)

UP
submission

UP
expired

(Download)
Latest approved

source code

stabilization

In Figure 3.4, we depict the decentralized implementation phase. Similar to the centralized case, the im-
plementation of a change must be based on some existing code, which we call the base source code and the
developer must download locally, in order to initiate the implementation. However, in the decentralized setting
there is not a centrally-owned code repository. All the approved versions of the code are committed into the
blockchain (i.e., only the hash of the update code is stored on-chain). Therefore, we assume that the developer
finds the appropriate (usually the latest) approved base source code in the blockchain and downloads it locally,
using the link to the developer-owned code repository provided in the UP metadata. We abstract this code reposi-
tory in Figure 3.4 with the depicted decentralized storage solution. This conceptually can be any storage area that
is not centrally-owned; from something very common, like a developer-owned Github repository, to something
more elaborate as a content-addressable decentralized file system.

It is true that the review of source code is a task that requires extensive technical skills and experience.
Therefore, it is not a task that can be assumed by the broad base of the stakeholders community. A voting
delegation mechanism at this point must be in place, to enable the delegation of the strenuous code-approval task
to some group of experts. In a similar logic with the delegation process, within the ideation phase, discussed
above, the delegation process could be leveraged to implement different update policies per type of software
update.

As we have seen, the voting approval of a SIP signals the beginning of the implementation phase for this
SIP. The SIP has an estimated implementation elapsed time that was included in the SIP metadata, submitted
along with the SIP at the ideation phase. This time period, increased by a contingency parameter, will be the
available time window for a SIP to be implemented. Upon the conclusion of the implementation, a bundled
(source code and metadata) UP is created. The UP must be uploaded to some (developer-owned) code repository
and a content-based hash id must be produced that will uniquely identify the UP. This hash id will be submitted
to the blockchain as a signal for a request to approval. This is accomplished with a specialized fee-supported
transaction, which represents the decentralized equivalent to a pull-request. SIPs that fail to be implemented
within the required time framework, will result to expired UPs and the SIP must be resubmitted to the ideation
phase, as a new proposal. The UP submission transaction signals the entering into the approval phase.

20

D4.1 – First Report on Architecture of Secure Ledger Systems

3.2.3 Approval

The submission of an UP to the blockchain, as we have seen, is the semantic equivalent to a pull-request, in the
decentralized approach. It is a call for approval. Indeed, the main goal of the approval phase is to approve the
proposed new code; but what exactly is the approver called to approve for?

The submitted UP, which as we have seen, is a bundle consisting of source code, metadata and optionally
produced binaries, must satisfy certain properties, in order to be approved:

– Correctness and accuracy. The UP implements correctly (i.e., without bugs) and accurately (i.e., with no
divergences) the changes described in the corresponding voted SIP.

– Continuity. Nothing else has changed beyond the scope of the corresponding SIP and everything that
worked in the base version for this UP, it continues to work, as it did (as long as it was not in the scope of
the SIP to be changed).

– Authenticity and safety. The submitted new code is free of any malware and it is safe to be downloaded
and installed by the community; and by downloading it, one downloads the original authentic code that
has been submitted in the first place.

– Fulfillment of update constraints. We call the dependencies of an UP to other UPs, the potential conflicts
of an UP with other UPs and in general all the prerequisites of an UP, in order to be successfully deployed,
update constraints. The fulfillment, or not, of all the update constraints for an UP, determines the feasibility
of this UP.

From the centralized approach perspective the above properties of the new code that the approver has to
verify and approve are not uncommon. In fact, one could argue that these are the standard quality controls in
any software development model. The first property has to do with testing; testing that verifies that the changes
described in the SIP have been implemented correctly and accurately. In the centralized approach this means that
the main maintainer of the code has to validate that the new code successfully passes specific test cases, either
by reviewing test results, of executed test cases, or by running tests on his/her own. Regardless, of the testing
methodology or type of test employed (unit test, property-based test, system integration test, stress test etc.), this
is the basic tool that helps the central authority to decide on the correctness and accuracy of the new code.

The second property for approving the new code has to do with not breaking something that used to work in
the past. In software testing parlance, this is known as regression testing. Again, in the centralized approach, it is
the main maintainer’s responsibility to verify the successful results of regression tests run against the new code.

The third property has to do with the security of the new code and the authenticity of the downloaded soft-
ware. The former calls for the security auditing of the new code. The latter, in the centralized case, is easy.
Since, there is a trusted central authority (i.e., the main code maintainer), the only thing that is required, is for
this authority to produce new binaries based on the approved source code, sign them and also the source code
with his/her private key and distribute the signed code to the community. Then, the users only have to verify that
their downloaded source code, or binaries, has been signed by the trusted party and if yes, then to safely proceed
to the installation.

Finally, the last property that has to be validated by the approver pertains to the fulfillment of the update
constraints. All the prerequisites of an UP must be evaluated and also the potential conflicts triggered by the
deployment of an UP must be considered. For example, an UP might be based on a version of the software that
has been depreciated, or rejected; or, similarly, it might be based on a version that has not yet been approved.
Moreover, it might require the existence of third party libraries that it is not possible to incorporate into the
software (e.g., they require licenses, or are not trusted). Then, we have the potential conflicts problem. What if
the deployment of an UP cancels a previously approved UP, without this cancellation to be clearly stated in the
scope of the corresponding SIP? All these are issues that typically a code maintainer takes into consideration, in
order to reach at a decision for a new piece of code.

21

D4.1 – First Report on Architecture of Secure Ledger Systems

Once more, the essential part that differentiates the decentralized from the centralized approach is the lack
of the central authority. All the properties that have to be validated basically remain the same but in this case the
approval must be a collective decision.

Figure 3.5: The approval phase.

Update
ConstraintsUP

submitted
UP

revealed

Decentralized Storage Solution

test/audit
source code

(Download)
source code & metadata &

binaries (optional)

UP
Voting

UP
approved

UP
rejected

UP submit stabilization

The approval phase in the decentralized approach is depicted in Figure 3.5. As we have seen, an UP is
a bundle consisting of source code, update metadata and optionally binaries produced from the source code,
aiming at a specific platform (e.g., Windows, Linux, MacOS etc.). The update metadata have to include basic
information about the update, its justification, they have to clearly state all update constraints and finally declare
the type of the change (e.g., bug-fix, or change request, soft/hard fork etc.) and priority, in order to enable the
appropriate update policy. The UP bundle is uploaded to some developer-owned code repository and a unique
hash ID, from hashing the content of the UP is produced. This UP hash ID is submitted to the blockchain, along
with a link to the code repository.

Similar to the ideation phase (where the corresponding SIP was submitted), the submission of a UP is a spe-
cial fee-supported transaction that can be submitted by any stakeholder. The UP is committed to the blockchain
following again a hash based commitment scheme, in order to preserve the rightful authorship of the UP.

Once the UP is revealed the delegated experts (remember the delegation that took place during the imple-
mentation phase) for this UP, will essentially assume the role of the main code maintainer that we described in
the centralized setting. In other words, they have to download the source code, metadata and possible binaries
and validate the aforementioned properties. The tools (e.g., testing) that the experts have available for doing the
validation are no different than the tools used by the main maintainer in the centralized approach. Moreover,
if binaries for a specific platform have been uploaded by the UP submitter, then the delegated experts must go
through the process of reproducing a binary from the source code and verifying that it matches (based on a hash
code comparison) the one submitted. If not, then the submitted binary must be rejected and this will cause a
rejection of the UP as a whole. So, there must be some extra caution when binaries are submitted along with
source code, since the metadata need to include sufficient information for the approver to be able to reproduce
the same binaries per platform.

Therefore the revealing of a UP, initiates a voting period for the specific proposal, in which the delegated
experts must validate all the UP properties posed and approve, or reject it, with their vote. Any stakeholder is
eligible to vote for an UP and the voting power will be proportional to his/her stake. If a stakeholder wishes to

22

D4.1 – First Report on Architecture of Secure Ledger Systems

cast a vote, although he/she has already delegated this right to an expert, then this vote will override the delegate’s
vote. Votes are specialized fee-supported transactions, which are committed to the blockchain.

One final note is that, as we have described, the decentralized approval phase that we propose, entails trans-
action fees. This means that the approval phase is not so flexible from a practical perspective, as to be used
iteratively (although technically this is possible). In other words, to reject an UP, then fix some bugs and upload
a new version for review etc. An UP rejection means that a resubmission must take place, with all the overhead
that this entails (transaction fees, storage costs, a new voting must take place, etc.). This is a deliberate design
choice that guards the system against DoS attacks. From a practical perspective though, it means that the submit-
ted UPs must be robust and thoroughly tested versions of the code, in order to avoid the resubmission overhead.
We do not want to pollute the immutable blockchain history with intermediate trial-and-error UP events.

3.2.4 Activation

The final phase in the lifecycle of a software update, depicted in Figure 3.2, is the activation phase. This is
a preparatory phase before the changes actually take effect. It is the phase, where we let the nodes do all the
manual steps necessary, in order to upgrade to an approved UP and at the end, send a signal to their peers that
they are ready for the changes to be activated. Thus, the activation phase is clearly a signaling period. Its primary
purpose is for the nodes to signal upgrade readiness, before the actual changes take effect (i.e., activate).

Why do we need such a signaling period in the first place? Why is not the approval phase enough to trigger
the activation of the changes? The problem lies in that there are manual steps involved for upgrading to the new
software, such as downloading and building the software from source code, which entail delays that are difficult
to foresee and standardize. This results into the need for a synchronization mechanism between the nodes that
upgrade concurrently. The lack of such a synchronization between the nodes, prior to activation, might cause a
chain split. This synchronization mechanism exactly is the activation phase and for this, it is considered very
important.

Clearly, the activation phase is not aimed as a re-approval phase for the UP. It is there to allow a smooth
incorporation of the software update into the network. Therefore it becomes relevant only for those UPs that
impact the consensus and can risk a chain split. For UPs that don’t impact the consensus (e.g., a code refactoring,
or some short of optimization, or even a change in the consensus protocol rules, which is a velvet fork [ZSJ+18])
there is essentially no need for an activation phase and the change can activate, as soon as the software upgrade
takes place.

Traditionally, when a software update needs to be activated and it is known that it is likely to cause a chain
split, a specific target date, or better, a target block number is set, so that all the nodes to get synchronized.
Indeed, this is a practice followed by Ethereum [B+14]. All major releases have been announced enough time
before the activation, which takes place when a specific block number arrives (i.e., the corresponding block is
mined). All nodes must have upgraded by then, otherwise they will be left behind. In Bitcoin [Nak08], there
also exists a signaling mechanism2. In this case, the activation takes place, only if a specific percentage of blocks
(95%) within a retargeting period of 2016 blocks, signal readiness for the upgrade.

Once the UP approval result has been buried under a sufficient number of blocks (i.e., the stabilization period
passes), then the activation period is initiated. In Figure 3.6, we depict the activation period in the decentralized
setting.

2see BIP-9 at https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki

23

D4.1 – First Report on Architecture of Secure Ledger Systems

Figure 3.6: The activation phase.

Update Policy
Impact

UP
approved

(Download)
source code or binaries to install

Decentralized Storage Solution

Install UP
Block issuers

signal activation
readiness New blocks

New blocks indicate
new version

UP
activated

UP
expired

yes

no

Update
Constraints

Adoption
threshold

met?

stabilization

The first step in the activation phase is the installation of the software update. Typically, as soon as the
UP approval is stabilized in the blockchain, the GUI of the client software (e.g., the wallet) prompts the user
to download and install the update, using the link that accompanies the UP. If in the UP bundle there exist an
approved binary, then the user can download and install this, otherwise the user must download the approved
source code. In the latter case, there exist an extra step of producing the binary code from the source code. In
any case, it is important to note that the new software is just installed but not activated. It will remain in a latent
state until the actual activation takes place.

For the nodes participating in the consensus protocol the installation of a software update means that they are
ready to activate, but wait to synchronize with their other peers. To this end, they initiate signaling. This means
that every new block issued will be stamped with the new version of the software, signifying their readiness for
the new update.

When the first block with the new version appears, we enter the adoption period for the specific UP. During
the adoption period the following conditions have to be met, in order for the activation to take place: a) The
number of blocks with a signal must exceed a specific threshold, b) the update constraints for the specific UP
must be fulfilled and c) the adoption time period must not be exceeded, otherwise the UP will become expired.

The blocks generated in a proof-of stake protocol are proportional to the stake and therefore, we can assume
that the signaling mechanism is also proportional to the stake. We can also assume that the honest stake majority,
will follow the protocol and eventually will upgrade and thus signal this event with their generated blocks. This
means that the minimum expected percent of signals (i.e., the activation threshold) cannot be other that the
minimum percent of honest stake majority required by the proof-of-stake consensus protocol. Of course, as we
have noted above, for changes that don’t impact the protocol, the activation threshold could be zero; meaning
that even if only one node upgrades, then the changes can be immediately activated.

Moreover, the adoption time period is not fixed for all UPs. It varies based on the type of the change, which
is something recorded in the UP metadata. One size does not fit all, and this is indeed true for the adoption time
period of UPs. For example, major updates that require a lot of manual steps, or significant build time, or even
hardware upgrade, should be adopted in a sufficient period of time, while small updates should be activated more
swiftly.

Finally, before the actual activation of a change, the validation of all the update constraints must take place
once more. This is true, although we make the assumption that from the approval phase all relevant update

24

D4.1 – First Report on Architecture of Secure Ledger Systems

constraints’ issues (like conflicts, or dependencies) have been considered. The fact that the adoption period
might require significant time for a UP, whose update constraints were fulfilled at the approval phase, while
concurrently there are other UPs that become activated, means that the conditions might have changed and the
update constraints must be reevaluated to make sure that no problems will arise upon activation of a UP.

25

Chapter 4

Toolkits

4.1 Toolkits for anonymous authentication and flexible consensus in Hyper-
ledger Fabric

This section covers two toolkits that will extend the Hyperledger Fabric open-source blockchain platform de-
scribed in Section 2.2. The first toolkit relates to anonymous authentication of parties, and the second toolkit
relates to consensus mechanisms as described in Section 2.2.2.

4.1.1 Anonymous authentication in Hyperledger Fabric

Consensus

Block policy and format Ledger store

Transaction processing

blocks

submit transactions

chain

confirmed transactions

Id
en

tit
y

se
rv

ic
e

Core ledger components

Figure 4.1: Connection between identity service and the core ledger components.

A permissioned blockchain system such as Hyperledger Fabric is dependent on an authentication infrastruc-
ture in order to differentiate between legitimate network participants and external parties. The fact that identities
are used does not presume a central entity, as the identity service itself can be federated. In Fabric, each trust
domain, such as one organization that participates in the platform, has its own Membership Service Provider
(MSP) in which entities of that organization are enrolled and through which these entities are authenticated. The
genesis block of the blockchain lists the MSPs for each organization. As each entity is authenticated via the MSP
of its own organization, network nodes are always aware of the organization to which an entity belongs, and can
make decisions based on how much they trust that organization. The role of an MSP in Fabric is depicted in
Figures 4.1 and 4.2.

The current main MSP implementation in Fabric is built on X.509 certificates and is referred to as Fabric-CA.

26

D4.1 – First Report on Architecture of Secure Ledger Systems

Using X.509 has the advantage that legacy infrastructure can be used; however, it severely limits the privacy that
can be achieved as all transactions are signed with respect to the client’s certificate and endorsed with respect to
those of the peers. To resolve these privacy concerns, an implementation of an MSP based on the Identity Mixer1

anonymous credential system is currently under development.

Client

Ordering
Service

(transaction timestamping)

End-user
Alice

Ord

Ord

Ord Ord

Ord

Ord

C
ha

nn
el

C
ha

nn
el

C
hannel

C
ha

nn
el

C
hannel

C
hannel

Endors

Endors

Client

End-user
Bob

Endors

Endors

Endors

Endors

Membership
Service Provider

Membership
Service Provider

Figure 4.2: The MSP of each organization provides identities for all entities of that organization. Two organiza-
tions are depicted: Alice and Bob. Alice’s MSP provides identities for Alice’s endorsers (i.e. peers that execute
the chaincode) and clients, and two orderer nodes under Alice’s control. Bob’s MSP provides identities for Bob’s
endorsers and clients; Bob does not control orderers.

The main implementation of an MSP in Fabric is based on X.509. Each organization uses an X.509 certifi-
cate authority (CA) to provide certificates for all its entities. The use of X.509 has the advantage that a lot of
infrastructure is available already, and many large organizations already run an X.509 CA to manage some part of
their infrastructure. This reduces the migration effort. Yet, X.509 certificates state all attributes of the respective
entity in the clear. As network nodes must be able to verify transactions, this means that the certificate of the
party authorizing the transaction must be known to those nodes. Consequently, an authentication infrastructure
based on X.509 certificates does not allow clients to anonymously invoke transactions, which is, however, needed
in order to protect user privacy and business data confidentiality in many use cases.

Anonymous credentials and Identity Mixer. An anonymous credential system allows a party to prove certain
attributes about its identity without revealing any additional information. In a nutshell, an anonymous credential
system has an Identity Provider, which acts similarly to a CA in a X.509 public-key infrastructure in that it
provides certificates to the users. When presenting a certificate to a verifier, however, the user does not simply
send the certificate it received from the Identity Provider. Instead, it proves with zero-knowledge that it knows
the key associated to its credential and selectively opens attributes contained in the certificate. Identity Mixer is
a sophisticated anonymous credential system, which was mostly developed at IBM Research and is presented in
various research publications [CL01, CH02, CL04].

1https://www.zurich.ibm.com/identity_mixer/

27

D4.1 – First Report on Architecture of Secure Ledger Systems

Identity Mixer in Fabric. Identity Mixer has been included in Hyperledger Fabric since release v1.3.2 This
implementation, however, focuses on the basic functionality: generating anonymous credentials for users and
verifying them in the context of a smart contract invocation. The current implementation misses out on several
aspects needed for an enterprise-grade implementation, such as an efficient method for revoking users that leave
an organization or whose secret information has been exposed.

The toolkit: Revocation of user identities. In public-key infrastructures based on X.509, revocation of iden-
tities is performed by regularly (e.g., once a day or week) publishing Certificate Revocation Lists (CRLs) that
contain all certificates that have not expired but shall be considered invalid for other reasons, such as because an
employee left an organization or the private key associated to a certificate was exposed. Some CAs additionally
offer access via the Online Certificate Status Protocol (OCSP), which allows to interactively check whether a
certain certificate is still considered valid.

An anonymous credential system cannot implement revocation in the same, straightforward manner, since
the individual authentication sessions of a user shall be unlinkable. Either publishing the revocation information
would break the privacy of past interactions, which is undesired in cases where the revocation is not related to
exposure of the private key, or it would also not allow to detect the use of the certificate in future sessions.

• Certificates can be revoked at any time
• Non-revocation proof is unlinkable: no loss of

privacy for non-revoked users
• RA can be run by the CA or a separate entity

that is common for multiple Cas

Revocation
Info

Revocation
Info

Certificate
Authority (CA)

Attr 1
RevHpublic keysigning key

Attr 1
RevH

Transaction A

Attr 1
Attr 2

Revocation
Authority (RA)

public
key

signing
key

Verifier

CA’s
public key

ü

Revocation
Info

Prover

Figure 4.3: Roles in the revocation scenario. The Revocation Authority keeps track of the revoked credentials in
the CRI, which is published to the CA, the provers, and the verifiers.

The system architecture of the solution we plan to implement in Fabric is depicted in Figure 4.3. The
Revocation Authority (RA) keeps track of the revoked credentials in the Certificate Revocation Information
(CRI). The CRI is periodically sent to the CA, and is also (partly) accessible for all provers and verifiers in the
protocol. The solution is based on the following concepts:

Epoch: An epoch is a time window that is identified by an integer, the epoch number. Epoch numbers increase
monotonically over time.

Revocation handle: A revocation handle is a specific (secret) attribute of a user that is included in the certificate.
2https://hyperledger-fabric.readthedocs.io/en/release-1.3/whatsnew.html

28

D4.1 – First Report on Architecture of Secure Ledger Systems

Revocation keys: A specific private/public key pair used by the CA to issue information related to revocation.

In Identity Mixer, the credential of a user is the signature of the Identity Provider on the attributes. Presenting
a credential is performed by providing a (non-interactive) zero-knowledge proof of knowledge of this signature.
This proof also contains a statement about the attributes that a user wants to present. In the method we propose,
the attributes also contain the revocation handle. In every epoch, a user has to once obtain a new confirmation
that his credential has not been revoked; this confirmation is the signature on the revocation handle and the epoch
number, relative to the revocation keys. Presenting a credential then also includes knowledge of a confirmation
for the current epoch number.

Alternatively, the CA could send the information to the users proactively after a new epoch is started. This
is, however, first difficult to implement, since clients are not required to be online and cannot be contacted by
the CA. Second, as (based on experience from use cases) clients tend to have long periods of inactivity, having
them request the current period before issuing a transaction is expected to be cheaper than proactively creating
the information for each client at the start of a new epoch, at least for most use cases.

4.1.2 Flexible consensus in Hyperledger Fabric

The purpose of the toolkit on Flexible consensus in Hyperledger Fabric is to support asymmetric trust assump-
tions. The toolkit builds on research performed within Work Package 3.

Traditional consensus algorithms in the permissioned setting such as Paxos or PBFT operate in a setting
where the trust assumption is symmetric. In other words, a global assumption specifies which processes may
fail, such as the simple and prominent threshold quorum assumption, in which any subset of the participants of a
given maximum size may collude and act against the protocol. The standard threshold assumption, for instance,
allows all subsets of up to f < n/3 processes to fail. Some classic works also model arbitrary, non-threshold
symmetric quorum systems, but these have not actually been used in practice.

Trust, however, is inherently subjective. De gustibus non est disputandum. Estimating which processes will
function correctly and which ones will misbehave may depend on personal taste. A myriad of local choices
influences one process’ trust in others, especially because there are so many forms of “malicious” behavior.
Some processes might not even be aware of all others, yet a process should not depend on unknown third parties
in a distributed collaboration.

The toolkit described in this section and planned as an outcome of PRIViLEDGE will implement the protocol
that is developed in Work Package 3. As the research in that work package is still ongoing, the description of the
protocol cannot be provided at this point in time. We proceed by describing the interfaces between Hyperledger
Fabric and implementations of consensus protocols; these are the interfaces that the toolkit will implement.

Implementation in Hyperledger Fabric. As discussed in Section 2.2.2, Hyperledger Fabric has a modular
architecture in which the ordering service can be implemented based on different types of consensus protocols.
The ordering service receives transactions from the clients, orders them and puts them into blocks, and then
distributed those blocks to all peers in the network. The ordering service, therefore, offers two types of APIs that
we will describe in the following, one towards the clients, and one towards the peers.

Implementation in the ordering service. The main consensus protocol is executed on the ordering ser-
vice nodes. The toolkit will implement the consensus protocol, including the necessary communication be-
tween different ordering service nodes. For integration with the Fabric infrastructure, an interface dubbed
ConsenterSupport is provided to the consensus algorithm. In a nutshell, the “shell” of an ordering ser-
vice node is independent of the consensus mechanism that it runs, and it provides a callback interface to the
consensus mechanism. This way, the implementation of the consensus mechanism can be independent of other
parts of the system, such as the policy methods for generating blocks, or the network protocols used to dissemi-
nate completed blocks to the entire network.

29

D4.1 – First Report on Architecture of Secure Ledger Systems

The ConsenterSupport interface in particular specifies a so-called block cutter that implements the
policy service that determines which transactions will be included in the next block. (This policy is thereby sep-
arated from the consensus mechanism.) The interface also allows to access a shared configuration that contains
parameters controlling the behavior of the consensus algorithms; these are specific to each consensus method but
read and provided by the main ordering service software.

The interface provides further calls that allow the consensus mechanism to deliver the next block that was
decided by the consensus mechanism, In particular, the call WriteBlock(...) writes the new block to the
disk of the ordering service node; from there it will be distributed to all peers in the network. (This mechanism
does not depend on the consensus implementation used.)

Implementation of the client interface. As described in Section 2.2, clients submit transactions (that contain
endorsements by peers) to the ordering service. As the exact method of submission may depend on the consensus
method in place, such as whether the transactions have to be sent to a single or to multiple nodes, Fabric specifies
an interface through which the interaction with the ordering service takes place, which can be used by clients
and must be implemented by the consensus mechanism.

The main command of this interface is Order(...), which takes as parameter the envelope, a data structure
that contains all the transaction data. Additional parameters ensure that the client sends the transaction to the
channel in the expected configuration (as the channel configuration can change, such as when organizations join
or leave the network). This interface is implemented on the client side; calling Order(...) will then compile
the actual network-level message that is sent to the ordering service nodes, using a protocol that may be specific
to the consensus implementation.

Other methods specified in the interface Configure(...), which allows to send a special blockchain-
reconfiguration message to the ordering service, which allows to, e.g., add a further organization to the blockchain
or change other parameters such as the target wait time for each block. The calls WaitReady and Errored
allow the client to observe the state of the ordering service, and Start and Halt allow to initiate or terminate
the network connection between the client to the ordering service.

Implementation of a consensus mechanism. As the exact internal software design of the component depends
on the work on consensus protocols in WP3, which is currently in progress and is expected to be included in
D3.2.

4.2 Toolkit for post-quantum secure protocols in distributed ledgers

This toolkit will provide client components to enable access to two security mechanisms expected to provide
post-quantum security. Both mechanisms are based on hash functions which are widely believed to be resistant
to quantum attacks, suffering only polynomial security losses (in contrast to the exponential losses of systems
based on the hardness of factoring or computing discrete logaritms). Formal analysis of the security of these
mechanisms in the quantum setting is an ongoing research effort, though.

The puropose of the BLT signature scheme is to provide an alternative autentication mechanism. The KSI
time-stamping service in turn is a supporting component for the BLT signature scheme.

4.2.1 KSI time-stamping

The KSI blockchain provides a hash-and-publish time-stamping service backed by control publications in phys-
ical media. Once connected to the publications, the evidentiary value of the time-stamp tokens relies only on
security properties of cryptographic hash functions and does not depend on asymmetric cryptographic primitives
or secrecy of any keys or passwords [BKL13].

30

D4.1 – First Report on Architecture of Secure Ledger Systems

Figure 4.4: KSI architecture: aggregation (left) and linking (right).

Aggregation and linking. The service operates in fixed-length rounds. During each round, incoming client
requests are aggregated into a globally distributed temporary hash tree (Fig. 4.4, left). At the end of the round,
the root of the aggregation tree is added to an append-only data structure built around another hash tree, called
the calendar blockchain (Fig. 4.4, right), and each client receives a two-part response consisting of

– a hash chain linking their request was to the root of the aggregation tree; and

– another hash chain linking the root of the aggregation tree to the new root of the calendar tree; this chain
can be used to verify that the new state of the calendar blockchain was obtained from the previous one by
appending the new aggregation tree root without changing anything else.

After that, the aggregation tree can be discarded and a new one is built for the next round.

Figure 4.5: KSI publishing (left) and a publication (right).

Publishing. Periodically, the root hash value of the calendar blockchain is printed as a control publication in
physical media (Fig. 4.5, left). Each such publication printed in a widely circulated newspaper (Fig. 4.5, right)
acts as a trust anchor that protects the integrity of the history of the blockchain up to the round from which the
publication was extracted.

Client passwords or keys may be used for service access control, but they do not affect the proof of data
integrity or time. A set of symmetric keys is used to authenticate communications among the consensus nodes
maintaining and updating the calendar blockchain, but their compromise also does not affect the evidentiary
value of the time-stamp tokens already issued and linked to control publications.

A possible use of the KSI service in other ledgers is to time-stamp blocks of a private ledger to provide
immunity against the so-called rewind-edit-replay attacks where the consortium managing the ledger agrees to
retroactively edit some past transactions and modify all subsequent blocks to match the modified history. Alter-
natively, direct access to the KSI service from smart contract applications may be enabled for similar purposes.

Of course, the consortium maintaining the ledger could issue their own publications, but this would incur
additional cost and hassle that can be avoided by delegating the task to the KSI service designed specifically for

31

D4.1 – First Report on Architecture of Secure Ledger Systems

the purpose. Additionally, most ledgers have a linear structure and a proof linking any particular transaction to
a publication would have to traverse many blocks. The KSI blockchain uses a hash tree to enable proofs whose
size is logarithmic in the number of aggregation rounds.

4.2.2 BLT signature scheme

BLT combines a time-stamping service and message authentication codes with time-bound one-time keys to
obtain a server-assisted signature scheme whose long-term evidentiary value relies only on security of crypto-
graphic hash functions and the assumption of secrecy of the one-time keys up to the signing time [BLT17].

Key generation. Each of the signing keys z1, z2, . . . , zn is generated as an unpredictable value drawn from a
sufficiently large set. Each key is pre-bound to a designated usage time by computing commitmets xi = h(ti, zi),
where h is a hash function and ti is the designated usage time for the key zi. The commitments are aggregated
into a hash tree T and the root hash value of the tree is published as the signer’s public key p.

Signing. To sign the messagem at time ti, the signer authenticates the message with the corresponding signing
key by computing y = h(m, zi) and then proves the time of usage of the key by obtaining a time-stamp at on
the message authenticator y. The signature is then composed as σ = (ti, zi, at, ci), where ci is the hash chain
authenticating the membership of the pair (ti, zi) in the hash tree of the client’s signing keys. Note that it is safe
to release zi as part of the signature, as its designated usage time has passed and thus it can’t be used to generate
any new signatures.

Verification. To verify the signature σ = (t, z, a, c) on message m against the public key p, the verifier

– checks that z was commited as signing key for time t by verifying that the hash chain c links the commit-
ment x = h(t, z) to the public key p; and

– checks that m was authenticated with z at time t by verifying that the hash chain a links the authenticator
y = h(m, z) to the summary commitment Rt of the time-stamping aggregation round for time t.

The primary goal of the BLT component of the toolkit is to provide a replacement for asymmetric-key based
digital signature schemes as transaction authentication mechanism.

Note that the security of the signature scheme critically depends on the security of the time-stamping ser-
vice against back-dating attacks by the adversary. Therefore, a post-quantum secure time-stamping service is a
necessary pre-condition for post-quantum security of the signature scheme.

Additionally, the ledger whose transactions are to be authenticated by the signatures cannot itself be used to
prove the usage times of the keys, and therefore an external time-stamping service is needed for that purpose.

32

Chapter 5

Conclusions

This deliverable described the architecture of protocols for secure ledger systems to provide a high level structure
that can be used, without ambiguity, to describe the protocol architecture of use cases and toolkits. Following
this approach, an overview is provided for the architecture of the secure ledger systems that are more relevant to
PRIViLEDGE: Hyperledger Fabric and Cardano. The final part of the document (Chapter 3 and 4) presented the
preliminary outputs of the research done in the context of use case 4 and of the toolkits related to Hyperledger
Fabric and to secure ledger systems in a post-quantum scenario. Overall, this document provides a global picture
of the progress of the research done to date, and the process of writing the deliverable has provided many ad-
vances and a better understanding of the studied problems. This has allowed designing a detailed architecture for
the Cardano update system (use case 4) and for the toolkit for anonymous authentication. The next steps in terms
of research will concern the problems left open in this deliverable, that are mainly related to the achievement of
a better understanding on how to concretely realize (in terms of cryptographic primitives) the protocols proposed
at a high level in this document.

33

Bibliography

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, An-
gelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srini-
vasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yellick.
Hyperledger Fabric: a distributed operating system for permissioned blockchains. In Rui Oliveira,
Pascal Felber, and Y. Charlie Hu, editors, Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys 2018, Porto, Portugal, April 23-26, 2018, pages 30:1–30:15. ACM, 2018.

[B+14] Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. white
paper, 2014.

[BCD+14] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller,
Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain innovations with
pegged sidechains. 2014. http://www.opensciencereview.com/papers/123/
enablingblockchain-innovations-with-pegged-sidechains.

[BKL13] Ahto Buldas, Andres Kroonmaa, and Risto Laanoja. Keyless signatures’ infrastructure: How to
build global distributed hash-trees. In Hanne Riis Nielson and Dieter Gollmann, editors, Secure
IT Systems - 18th Nordic Conference, NordSec 2013, Ilulissat, Greenland, October 18-21, 2013,
Proceedings, volume 8208 of Lecture Notes in Computer Science, pages 313–320. Springer, 2013.

[BLT17] Ahto Buldas, Risto Laanoja, and Ahto Truu. A server-assisted hash-based signature scheme. In
Helger Lipmaa, Aikaterini Mitrokotsa, and Raimundas Matulevicius, editors, Secure IT Systems -
22nd Nordic Conference, NordSec 2017, Tartu, Estonia, November 8-10, 2017, Proceedings, volume
10674 of Lecture Notes in Computer Science, pages 3–17. Springer, 2017.

[CD17] Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by public entities. In
Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of LNCS,
pages 537–556. Springer, Heidelberg, July 2017.

[CH02] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous
credential system. In Vijayalakshmi Atluri, editor, Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS 2002, Washington, DC, USA, November 18-22, 2002,
pages 21–30. ACM, 2002.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In Birgit Pfitzmann, editor, Advances in Cryptology
- EUROCRYPT 2001, International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in
Computer Science, pages 93–118. Springer, 2001.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, 2002.

34

D4.1 – First Report on Architecture of Secure Ledger Systems

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilin-
ear maps. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings, volume 3152 of Lecture Notes in Computer Science, pages 56–72. Springer, 2004.

[DGKR17] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros Praos: An
adaptively-secure, semi-synchronous proof-of-stake protocol. Cryptology ePrint Archive, Report
2017/573, 2017.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and
keys. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431. Springer,
Heidelberg, January 2005.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis
and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, August 2017.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[SBV18] João Sousa, Alysson Bessani, and Marko Vukolic. A Byzantine fault-tolerant ordering service for
the Hyperledger Fabric blockchain platform. In 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, June 25-28, 2018,
pages 51–58. IEEE Computer Society, 2018.

[ZOB18] Bingsheng Zhang, Roman Oliynykov, and Hamed Balogun. A treasury system for cryptocurren-
cies: Enabling better collaborative intelligence. Cryptology ePrint Archive, Report 2018/435, 2018.
https://eprint.iacr.org/2018/435.

[ZSJ+18] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar R. Weippl, and
William J. Knottenbelt. A wild velvet fork appears! Inclusive blockchain protocol changes in
practice - (short paper). In Financial Cryptography and Data Security - FC 2018 International
Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Se-
lected Papers, pages 31–42, 2018.

35

